Bugs Cost Money!

ISSA Journal | January 2007

An analysis of the SQL injection bug

By Akash Desai

The software development life cycle today sees bugs being introduced at every stage. Bugs

mean money today in the business sense, and a seemingly insignificant bug can be worth

millions of dollars to a business.

A bug’s life

he software development life cycle today sces bugs being
E introduced at every stage. Bugs mean money today in the
business sense, and a seemingly insignificant bug can be
worth millions of dollars to a business. The dollar worth of bugs
can be seen as almost proportional to the stage of the development
life cycle in which they are caught. A study by NIST indicates that
ameager 45 percent of all bugs are actually caught in the same stage
where they crept in'. The study also suggests that the testing and
debugging stages amount to a whopping 80 percent of the total life
cycle cost. No matter which stage a bug creeps in from, this much is
clear: The cost of fixing a bug caught early is far less than the cost of
fixing a bug overlooked for some time.

The painful injection

The consequence of bugs is that applications, Web servers and a host
of user interfaces become vulnerable to a variety of security loop-
holes, such as input validation, access validation, exception handling
errors, configuration errors and race conditions. Among these, input
validation can be especially intriguing — exploiting it often takes little
effort and can lead to complete compromise of the target system. In
an input validation attack, an attacker provides an application with
an input which the application does not check properly. The applica-
tion then responds to the specially crafted input, providing the at-
tacker with access to the resource the application is protecting, often
a database.

We focus our attention on what has remained, even today, one of the
simplest and yet most widespread input validation bugs. These are
well known on the Web as “SQL. Injection bugs,” often in the con-
text of SQL Injection attacks, as hackers are taking advantage of this
loophole more and more. SQL Injection bugs are non-validated in-
puts which leave open a feast of vulnerabilities ready to be devoured

L The Economic Impacts of Inadequate Infrastructure for Software Testing, Prepared by RTT for
NIST. hrtpedwww.nist.govidirector/prog-ofe/report2-3.pdf

32

No matter which stage a bug creeps
in from, this much is clear: The cost of
fixing a bug caught early is far less than
the cost of fixing a bug overlooked for
some time.

by malicious attackers on the Web. The end result of these bugs is
that attackers can execute arbitrary SQL queries and commands on
the backend database server. Putting things into perspective, if this
database belonged to a bank, and an attacker could execute queries
on it, all customer information would therefore be compromised.

Consider an electronic form that accepts a username and a password.
Ideally, this form ends up querying a database in an attempt to re-
trieve information. For example, let us assume that the User table
shown below 1s one of the tables in the database:

User

Username

| Password I ID _ Number

The ID Number of the user is to be utilized in each transaction the
user performs. A user enters a username and password, and then a
query is executed which retrieves this information about the user for
authenticated entry. The query would go something like this:

Select ID _Number from User where Username
‘erm’ and Password = ‘enterprise risk manage-
ment’

In the event that this form has an SQL Injection bug left behind
from the development stages of the information system, an attacker

sitting on the electronic form console can take advantage of this bug
in the following manner:

Username: ronaldinho




